PHYSICAL REVIEW D, VOLUME 60, 105040

New basis function approach to the 't Hooft-Bergknoff-Eller equations

Osamu Abé&
Laboratory of Physics, Asahikawa Campus, Hokkaido University of Education, 9 Hokumoncho, Asahikawa 070-8621, Japan
(Received 5 April 1999; published 28 October 1999

We analytically and numerically investigate the 't Hooft-Bergknoff-Eller equations, the lowest order me-
sonic light-front Tamm-Dancoff equations for N¢) and SU(N¢) gauge theories. We find the wave function
can be well approximated by new basis functions and obtain an analytic formula for the mass of the lightest
bound state. Its value is consistent with the precedent re§8l#§56-282(199)01020-9

PACS numbgs): 11.10.Ef, 11.10.St, 11.15.Tk

[. INTRODUCTION [12], including four-fermion sectors, by means of the basis
functions of Haradaet al.
Light-front (LF) quantization is believed to be an effec-  Although excellent papers exist concerning massless and
tive method for studying many-body relativistic field theories massive Schwinger models and two-dimensional QC&-
[1,2]. The physical vacuum is equivalent to the bare vacuuni9l, including excited states, it is worth analyzing the

in the LF coordinate, since all constituents must have non- 't Hooft-Bergknoff-Eller” equation [13], the extension of
negative longitudinal momenta defined bg*=(k® the 't Hooft-Bergknoff equation, in order to include both

+k3)/4/2. This simple structure of the true vacuum enables>Y(Nc) and UNc) gauge theories. This is because there is
us to avoid the serious problems which appeared in thé& mathematical interest in the basis function method. There
Tamm-Dancoff(TD) approximation[3] in the equal time 'S "° mathematical evidence that the conventional basis

T . function expansion describes the wave function well; in-
frame. Therefore, the TD approximatidd] is commonly . . :
) o stead, the contrary is rather to be supposed, as there is evi-
used in the context of LF quantization.

The techniques have been develofe7] for solving dence that the conventional method breaks down if we try to

improve the approximation. We would therefore like to im-

LFTD equations in several models such as the massiVf,e the basis functions so as to avoid such difficulties.
Schwinger model8], which is the extension of the simplest Further, there is a so-called “2% discrepancy” problem,

(1+1)-dimensional QED (QER) [9]. Bergknoff [10] first  pyiefly summarized as follows: We expand dimensionless

applied the LFTD approximation to the massive Schwingemeson mass squaréd? in terms of dimensionless quark
model. He obtained the so-called Bergknoff equation, whichmassm:

is the light front Einstein-Schobinger equation truncated to
one fermion-antifermion pair. He obtained excellent results M?=1+b;m+b,m*+ ..., (1.1
for the lowest energy meson under 't Hooft's ansatz. He also

discovered that it is necessary to include two fermion-Vhere
antifermion pairs in order to study the excited states. 2 —
Ma and Hiller[5] studied the lowest Bergknoff equation 2_ 2
) _ J and m 1.2
numerically. They developed their numerical method for #(Nc) #(N¢)
solving the Bergknoff equation using an idea based upon _ _
't Hooft's ansatz. Here,M is a mass of bound state denotes a bare mass of

Mo and Perny{6] suggested that even in the first excited quark, —and u(Ng) stands  for u(Nc)=(NZ—1
state, most of the wave function consists of four-fermion+ «@)g?/2mN¢. That is, we measure all masses in the unit of
sectors when the fermion mass reaches zero. Therefore, four(N¢c). Bankset al. [14] obtained first order coefficierit;
or more fermion sectors must be included so as to describanalytically, using the bosonization method:
wave functions beyond the ground state bosons.

In Ref.[6], Mo and Perry presented an effective way to b,=2e'€=3.56214 - -, 1.3
treat the ground state and the excited state in the massive . ,
Schwinger model. They concluded that to study the massivi¥here ye=0.5772% - is Euller's constant. On the other
Schwinger model, the Jacobi polynomials are suitable as b4!and, Bergknof{10] found the value
sis functions. Haradaet al. [7] studied the massive
Schwinger model with SU(2) flavor symmetry, including up b :2_7":3 62759 . - (1.9

. . . . 1 . y .

to four fermion sectors. They used simpler basis functions, J3

which are essentially equivalent to the Jacobi polynomials.

Sugihara, Matsuzaki, and Yahif@1] numerically analyzed which differs from Eq(1.3) by 2%. In Ref[15], the authors

2-dimensional SU{c) quantum chromodynamic§QCD)  suggested that the coefficiebt=2w/\/3 was a variational
invariant and that this discrepancy was ascribable to the con-
tributions from the higher Fock sectors. Before proceeding

*Email address: osamu@asa.hokkyodai.ac.jp on to consider the higher Fock sectors, we have to examine
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whether this discrepancy can be explained or not in terms of

the lowest light-front Tamm-Dancoff equation using all pos-
sible basis functions.

The 't Hooft-Bergknoff-Eller equation for two-dimen-
sional gauge theory is given in the form

1/2

M2d(x)= f 1/2dy H(x,y)®(y)

_ 4(m?-1) vz d(y)
=T v | v
12 1 1
+af dyd(y), —=-sxs=-, (1.5
—1/2 2 2

where p denotes the finite part integrads=1 for U(N¢),
anda=0 for SUN¢). In Eq.(1.5), we shifted the variable
total amount of—3 compared with the variable in Refs.
[10,12,13, in order to show the symmetry of the wavefunc-
tion transparently.

Mo and Perry concluded in Rdf6] that the Jacobi poly-
nomials, (1 4x?)#P£#(2x) in our notation, are the most
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1. CONVENTIONAL BASIS FUNCTION METHOD

In this section, we restrict ourselves to the case0
where the gauge group is SN§). Mo and Perry, and
Harada and his collaborators, presented an effective way to
determine the coefficients. We will briefly reproduce their
procedures. By the use of the expansion in Elg6) trun-
cated to given finite numbeX for the wave functionP, we
multiply both sides of Eq(1.5 by (1—4x?)#*" and inte-
grate them ovek, then we obtain

suitable basis functions. This conclusion seems quite natural

because the system of the Jacobi polynonm4#(2x) is an
orthogonal complete set on the interval <x<3 with re-
spect to the weight function (24x?)#. Harada and collabo-

rators [7] suggested using the simpler basis functions, (1

—4x%)B*1 and x(1—4x?)#*"1 in our notation, which are

equivalent to the abovementioned ones. According to Harada
et al, one can expect that the wave function could be ex-

panded as follows:

N
lim X a;(1—4x3)F*],
N— oo =0

N
lim X bjx(1—4x2)FH.
N—oo =0

(1.6

that the Eller equation does not mix even and odd function
with each other.
The exponenB and the quark mags are related to each
other by the equatiofl2,1Q
(m?—1)+ B cotBmw=0. (1.7
The authors of Refd5,10,7,1] adopted the positive small-
est solutionBy(m) of Eq.(1.7) asB in Eq.(1.6). That is, for
smallm,
B /3m( 2
Bo(m) = -

m
1— —

10) +0(m®)=gim+ B3m3+ - - .

(1.8

M2N5.=|:|5, §=t[a0,a1, P ,an_l]. (21)
HereN andH arenxn matrices and are given by
. 112 , .
Nij:f dx(1—4x2)PTi(1—4x?)~Ft]
~1/2
_wr(2p+itj+1) -
T 2T (2B+i+j+3/2) @2
and
~ 1/2 .
Hij=4(m2—1)f dx(1—4x?)2F it
-1/2
1/2 (1_4X2)B+i(1_4y2)ﬁ+j
—pJ dx dy
~12 (y—x)?
repg+i+ij)
o, 122
2 M = D) F a1 172)
24B+2i+2j73(18+i)(18+j)
2B+i+]
XB(B+i,B+1)B(B+],B+]), 2.3

see the Appendix of Ref7]. So-called “norm” matrix N
appeared in the above equation because the basis functions

Xve have used are not orthonormalized. In order to have ei-
@envalues of the generalized eigenvalue equation given in

Eg. (2.1), we have to solve the eigenvalue problem for norm
N first, i.e.,

N\;iz)\i\—;i . (24)
Next, we introduce a transformation mathi by
. v v
1 n (25)

W= = i~ )
[IVal[Vh1 [IvallVA,

Then, we can transform Eq2.1) into a usual eigenvalue
problem of the form

In the following sections, we try to determine the coefficients

a,’s, according to the predecessors.

M2b='"WHWb, a=Wb. (2.6)
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We can solve Eq(2.6), numerically. ForN=3 andm
=0.01, we find, for the ground state boson

3=0.00552328, M?2=0.0366342,

ap,=1, a,=0.00203562,

a,=—0.000579369, a;=0.000165813. (2.7)

The values of the left-hand sidéHS) and the right-hand
side(RHS) of Eq. (1.5 are shown in Fig. 1. The coincidence
of the LHS and the RHS is high for small valuesoffFor

PHYSICAL REVIEW B0 105040

After some tedious but not particularly difficult calculations,
we find that

rg+1)

(1 — a2\ Bs — g2\ T 2179 A2
L:(1—4x?)P A7 F(B+12) F(1,1/2— B;1/2;4x7),
rg+1)

(1 —Ax2\Bs —g 127 " 7 229 A2
L:X(1—4x%) 8w 1ﬂ('BH/Z)xF(Z,llz B;312;4x7).

(3.2

where F(a,b;c;x) is the Gauss’ hypergeometric function
[20], see the Appendix.

We restrict ourselves to the case where the wave function
is an even function, because we are interested in only the

x=*1/2, the behavior of the LHS and the RHS are quitegyound state meson. Thus, we are led to
different. There are sharp spikes at the end points. This be-
havior is not changed much even if we improve the order of N

approximation.

lim >, a,M%(1—4x?)A*n

Note here that in order to solve the generalized eigenvalug—= "=0

problem, the norm matrix should be positive definite. We

cannot advance the above procedure beyndl2, because
some of the eigenvalues of the norm matiixbecome al-

N
= lim X a,[4(m?—1)(1-4x?)F -1

N—o N=0

most zero or negative. We will examine mathematically this

approximated wave function in detail in the next section.

I1l. AN INSPECTION OF THE CONVENTIONAL BASIS
FUNCTION METHOD

A. Behavior of wave function around x=0

We introduce linear mag by

vz - fly)
L:f—Lf such that(Lf)(x)zpf dy——.
—12 T (Y—=X)

(3.9

10l ——————————7—————+—

0.99

Values of LHS and RHS in Eq. (1.1)

Ir'(g+n+1)

1/2
+am I'(B+n+1/2

F(1,1/2— B—n;1/2;4x?)|.
3.3

Now, we can examine whether the numerical result ob-
tained so far satisfies E(L.5) or not. We substitute Ed2.7)
into the above equation, and obtain

LHS(x) =0.0366936- 0.0010120%?— 0.0016559%*
—0.0046667%%+ O(x®) (3.9

and

RHS(x) =0.0367133- 0.003828%%+ 0.050314%*

—0.2104195+ O(x®). (3.5
Thus, the LHS and the RHS coincide, within numerical er-
rors, with each other only up ©(x°). We calculated coef-
ficientsa,’s up to n=10, but the coincidence between the
LHS and the RHS is not much improved. See Fig. 1.

B. Behavior of wave function nearx= %3

Bergknoff suggested that the behavior of wave function
® near end points= + 3 is important in order to calculate
the mass eigenvaludl?. In fact, Eq.(1.7) is derived by
demanding that the most singular part, that is, the coeffi-
cients of (1-4x%)#~1 on the RHS in Eq.(1.5 must be
cancelled, as there is no such term on the LHS. According to

FIG. 1. The comparison of the relative values of both sides of5€rgknoff's suggestion, we will examine the behavior of

Eqg. (1.5 for «=0. The wave function in Eq(1.5 was approxi-
mated by Eq(1.6) with N=3 and Eq.(2.7). The solid line repre-

wave function near the end points beyoB@1—4x2)#~1).
We set 4°=1—e. By the use of the identity for the hyper-

sents the LHS and the dotted line stands for the RHS. The RHgeometric functions, that is, E¢L5.3.6 in Ref.[20], which
with N=9, which is indicated by the dashed line, is exhibited for is valid fora+b—c#integer, we can expand the RHS of Eq.

comparison.

(3.3 arounde=0 and have
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* The main difficulty comes from the fact th@t maps (1
LHS=M?2> a,ef*" (3.0 —4x%* not only to the terms (+4x%)#*1~1 with non-

n=0 negative integej but also to the terms (24x?)!. One may
expect that the above difficulty is avoidable if the additional
terms (1—4x?)! are introduced in Eq(1.6). However, we
can easily see that coefficients of such terms must cancel. By
the use of the identity, that is E(¢L5.3.12 in Ref.[20], we
have, forn=2,

and
RHS=4(m?—1) Y a,e’ " +47> > a(B+])
n=0 n=0 j=0

1/2 n)k

(12— j eftn—1_o 12 . 2\n 2\k
xeolm(B+I)I— = —2m 2 (1= 4" - 5 _1) g =D )
i L(B+j+1)(112—B—j), . A2
< Y BT - DT (BT U2~ B—)al€ ~ T e
57 5 ()~ 12,
Substituti . . o > T (1 4x?)k
ubstituting the numerical solution, which is given in Eq. K=o kl(k+n—1)!
(2.7), into Egs.(3.6) and(3.7), we have
X[log(1—4x?)— y(k+1)
LHS(e)=0.0366342°+7.45734< 10 °ef*1—2.12247 U~ 1/2+K)] (3.11

X 10 %P2+ 0(ef*3) (3.9
Here,/(z) denotes the digamma function. An analogous for-
and mula forn=1 holds. See Eq(15.3.10 in Ref.[20]. If we
introduce a term (+4x?)" in Eq. (1.6) with positive integer
RHS( €)= 0.551656- 0.525734A+ 2.09072—2.08014A*1  n, a new singular term such a8~ 'loge appears only on the
5 RHS. Note that the exponentof € is the same as that of the
+0(e%). (3.9  introduced term. Thus all the coefficients of {#x?)"

o ~ should be zero.
Only €#~! terms on the LHS and the RHS coincide with

each other, because we defigeso that the coefficients of

€#71 cancel each other on the RHS. Note that the LHS does IV. NEW BASIS FUNCTION

not containe” terms with non-negative intege; while the We must notice that there are infinite solutions of Eg.
RHS does. These tendencies are not changed even if wg.7) in addition to the solution given by Eq1.8). In fact,
calculatea,’s for n=3, 6, and 10. we see that
If we rewrite the first two terms of Eq3.9) as
2
— B B = _ —

0.5516561 — €”) +0.025922", (3.10 Bn(m)=n+1/2 (T 1D 3t 12
we can see the origin of the spikes at the endpoints in Fig. 1. 1 1
The spikes arise from the existence of the constant term in o ———— 2l
the wave function. The wave functigh(x)=1 is the exact ((n+ 1/2)5776) (n+1/2) 72
solution of Eq.(1.5 for m>=0 and M?=0 in SUN).
Thus, one may expect that the spikes at the end points are n 40 +o(m?)
closely related to the existence of the massless bound state in 3(n+1/2)37* (n+1/2)57%
SU(N¢). This is not the case, however, because we can eas-
ily see that the constant term, in the wave function, is al- =p%+B2m?+ ..., n=1,23--. (4.1

lowed if and only ifm?=0. We may conclude that the spikes
are nothing but the artifact which arose from the fact that weFrom Eqs.(1.8) and(4.1), we are led to
have used the improper basis functions in Eg6). In fact,

we may remove the spikes if we use the suitable wave func- 0<B,(m)—By(Mm)—n<1/2,
tion. Refer to the next section.
The basis function given in Eq1.6) cannot be a good 0<Bn(m)— B (m)—(n—k)<1, n>k. (4.2

mathematical approximation of the true wave function. The
reason is as follows: If we truncate the series @g6) to N,  The above relations imply that E¢L.6) never incorporates
we expect that Eq(1.5) holds up toO(e#*N~1). We have terms such as (2 4x%)# "1 with positive integen and non-

only N+1 parameters,, a,, ..., a, andM?2 On the negative integey.
other hand, we haveR equations up ta(e*"N"1). No We posit that the wavefunction is given by an infinite
consistent solution can exist in general in this case. series

105040-4
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TABLE |. Number of nontrivial equations.

Terms Range of n Range pf Number of nontrivial equations
(1—4x%)Pn~1 0~N 0 (automatically satisfied
(1 4x?) P 0~N 0~N-n-1 N(NZH)

(1-4x3) 0~N-1 N

N N-n

(x)=lim > > ch(1—4x?)Ami,
N—ow N=0 ]=0

4.3

For counting the number of free parameters and the number
of nontrivial equations, we consider the truncated wave func-
tion to given finiteN. The truncated wave function includes
the term (1 4x?)#~ and all the other lower order terms. We
require that Eq(1.5) should hold up t@(1—4x?)#n~"1, For
each given value ofn, the unknown parameters aké? and

cl, except forcgzl. Thus the number of the parameters is
(N+1)(N+2)/2. On the other hand we haw(N+3)/2
nontrivial equations. See Table I.

The number of parameters is larger than that of non-trivia
equations by 1. Thus, we can solve the equationscfoin
terms of M2, Another equation of use to us is obtained by
multiplying both sides of Eq(1.5 by ®(x) and integrating
them over x,

co=1,

1/2

1/2 1/2
sz dx|<b(x)|2=f f dx dy®(x)H(x,y)®(y).
~172 —12) ~1r2

(4.9
It should be noted here that E@.3) is, mathematically,
the most general expansion. This means that there is no room
to introduce any other additional terms suchd&s —4x?)”

for y# B,+] with non-negative integers andj. If we in-
troduce such terms, then the following equality should hold:

0=4d[m’— 1+ mycot(my)](1—4x>)?" L. (4.5

This demands thatl=0. In the following subsections, we
will examine our new basis function in detail both analyti-
cally and numerically.

] and
A. An analytic approach

In this subsection, we will restrict ourselves to the case (/2

whereN=1. Up toO(eP1™1), we have four equations: —12

€Po1:0=4(m?—1)cd+ 47 By cot( mBy)cy, (4.68

o T+B)  , T(2+By)
~ O BT (121 By) 0BT (312+ fo)

0 1—‘(1_'—,81) 0 1—‘(:I-_'—:BO)
=12+ By) OT (3121 Bo)

%0

a

4

F2+By)  , (1+B61)
+C0r(5 )+C1r(3/2+31) '
0

(4.6b

2
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€Po:cOM2=4c(m?— 1) + 4 cot( 7 B,)

0
- CoBo

X +(1+ Bo)cs |, (4.60

ef171:0=4(m?—1)c+ 47 B, cot( wB1)c). (4.6d

Equationg4.69 and(4.6d are automatically satisfied. Since

we can solve Eqg4.60) and (4.69 for c§ andc{ in

terms ofm, M, By, and B;.

Now, in order to solve the above equations fdr we
Flssume that all physical quantities can be expanded in terms
of quark massn. That is,

M2=by+bm+---. 4.7

Thus, we have, up t®@(m),

I

12

x| () |2= (| D)

=1+m[285(22+ 8B 1—3 log(2)]
—12log 2)+ af{2—6 log(2)
~B35-610g(2)]})]
X{3[~2+a(—1+p9) 4B}

2(1-89)
2+ a+48)—apB?

+bim (4.8

1/2
X AYPOOHXY)D(y)

=(®[H[P)

= a+m(—2(1+28%(3+ B 2

+a{3(—1+ B +(B5)[48+ 68— w2+ B m?
—36log2)—368%10g(2)]})
X{3Bi[—2+a(—1+p)—4p3]} 1

2(1-8Y)
2+ a+4ﬁ(l)—a,82 .

+bim (4.9
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1.05——m—————————7————7————— In cases wherbl=2, we cannot treat things analytically. We

— will attempt to solve Eq(1.5 numerically by the use of new

- basis function in the next subsection.

L]

;?; B. A numerical approach

g In general, we have

v | 12

3 0=M2<D(X)—f dy H(x,y)P(y)

-1/2 e

d 1-4x2=¢

o

m oo

0 =—4Y cO(m?—1+mB,cotmB,)ehn 1

] n=0

H

0.95 + (MZCL—4(m2—1)cL+1
n=0 j=0
X
FIG. 2. The comparison of the relative values of both sides of 3 (=1/2)j41-«

- L _ k Ad RS G
Eqg. (1.5 for a=0. The wave function in Eqg(1.5 was approxi- 477;() Cn(Bnt+Kk)cotmpB, (+1-k)! €
mated by Eq.(4.3) with N=1 and Eq.(4.10 with m=0.01. The
solid line represents the LHS and the dashed line stands for the g2 =z =z AT (B,+j+1)
RHS. 2 2 CJn( - -

2 i=oi=0 " (Bati—DI(Byt+i+1/2
We may expect that coefficiebt, depends onw, as both al(B,+j+1)

60

coefficients ofmin Egs.(4.8) and(4.9) explicitly depend on “Ta+ir3D
a. However, this is not the case. Indeed, from Eg4), we (Bnt] )

are led to -

S r(B,+j+1)
112 j
1 Bim? tem kzo nZOJZO C”(ﬂnﬂ—l)F(BnHJrl/Z)
M?=a+|—+ 3 m+O(m?) .
Bo (1/2_,8n_1)k+1) 1
—— | (4.11)

o , (2=Bn=1k+1
=a+—=m+0(m°). 4.1

NE (m?) (4.10

Here, e=1—4x? as before. Of course, the first line in Eq.

Note that we obtained the first line in the above expansio-11_cancels automatically because of the definition of

without referring to the explicit value of;. We did not Bn'S: Then, suppose that we truncate series in @) to

reproduce the result of Banket al, but that of Bergknoff, O(e”V). That is, we set;=0 for n+j>N. For a givenm,

The approximated wave function in case=0.01 andN ~ We putM?=M?. We can then solve Eq4.11) for c}, in

=1 is shown in Fig. 2. The approximation used here is sgerms of M;. We thus obtain thev; dependent truncated

rough that the coincidence of the LHS and the RHS is poorwave function, sayP(x;M;). We can calculate a new mass

Nevertheless, the behavior of the RHS near the end points BigenvalueM . ; using this wave function as

quite calm compared with the results of the conventional

basis function method. The smoothness of the RHS is quite , _{(@(M)[H[®(M;))

natural. As mentioned previously, the wave function given in 1= [@(M)[B(M)

Eq. (4.3) is the most general. If we truncate the wave func- : :

tion up to orderN, it becomes smooth. So we may also

expect the RHS of the 't Hooft—Bergknoff-Eller equation to We can use Eq4.10 asMg. ForN=<15 andm=0.01, mass

be smooth. M2 converges in 5 iterations. For<Om<0.5, we obtain
We may expect that the coincidence of the LHS and theM?’s which are summarized in Table 1l. We can fit them by

RHS will be improved if the higher order terms are included.polynomials, as follows:

(4.12

TABLE Il. Numerical results for bound state mal¥ in SU(N¢) and UN¢) models as a function of
quark massn.

m 0.01 0.10 0.20 0.30 0.40 0.50
M2 in SU(Nc) 0.036634 0.398634 0.869282 1.412358 2.028271 2.717415
M2 in U(N¢) 1.036607 1.396177 1.860377 2.394130 2.998685 3.675073
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12—m——————— This relation holds independently of the detailswf, v1,

and a,, except for certain assumptions which were made
before Eq.(5.2). The coefficient ofm in Eq. (5.2) has the
minimum value 2r/\3 when yg=B5=\3/7. We may
therefore conclude that E¢6.2) holds universally, provided
that (1) the wave function can be expanded as a power series
of (1—4x?), similar to

]

D(x)=(1—-4x2) 70+ > a(1-4xD)", o<y <---
=1

0.98 and (2) the coefficients of the series;’s, are of order

ml/2+ 6

LHS and RHS in Eq. (1.1)

An almost identical result has been obtained by Harada
et al.[15], in which they have restricted themselves to a case
x wherey,= B, andy;= Bo+]j. Our conclusion is a generali-
zation of Haradeaet aI s result. We, therefore, cannot solve

FIG. 3. The convergence of the new basis function expansnoqhe “29 discrepancy” problem in the context of the
for m=0.01 fixed. The thin solid line represents the LHS in Eq. . 4o ¢ Bergknoff-Eller equations

(1.5), provided that the wave function was approximated by Eq.
(4.3) with N=15. The dotted line denotes the RHS witl+= 2, the
dot-dashed line exhibits the RHS witki=3, the dot-dot-dashed ACKNOWLEDGMENTS

line represents the RHS withi=4, the dot-dash-dashed line stands .
for the RHS withN=5, and the dashed line exhibits the RHS with _ '€ author would like to thank Professor K. Tanaka and

N=10. The thick solid line indicates the RHS in E(..5) with Professor G.J. Aubrecht for comments and discussions dur-

wave function given in Eq(4.3) with N=15. ing the early stage of this work. He is also grateful to Dr.
Harada for useful discussions of the 2% discrepancy problem
M2(a=0m)=3.62763n+ 3.5802M2+ 0.0683578° and related topics. This work was supported by the Grants-
(a=0m) in-Aid for Scientific Research of Ministry of Education, Sci-
o(m*) ence and Culture of JapdNo. 10640198

2 _ _ 2 3
M2(a=1m)=1+3.6242m+ 3.344922+0.21383%n APPENDIX: PROOF OF EO. (3.2

4
+0o(m?). (4.13 We will prove Eq.(3.2). For monomialx", by the use of

It should be noted here that the coefficientstoéire consis- the definition of the finite part integral, we obtain

tent with Eq.(4.10 and Bergknoff's result. In order to see
the efficacy of this new basis function expansion, we show
the wave functions in Fig. 3.

n

L:x" X n-i 1o ox f Al
.xa—mﬂ—nx Ogl+2x+ a(x). (A1)

V. SUMMARY AND DISCUSSION Here,
In the preceding sections we have introduced the new C
basis function and calculated the mass eigenvalue of the m.o_m¥ke o k-1 1 k-1
bound state using the new basis function. We have found that f ,( E k ((E—x) —( 3 —x) ]ka
(1) the new basis function gives an effective approximation k=2
of the wave function and2) the mass eigenvalues are con- - (2k+1)x2
sistent with the results of the precursors. In the remainder of 2 , for m=2n,
this section, we will discuss the 2% discrepancy problem. ] k=0 {2(n—k)—1}22n- 22
Let us consider the wave function given by nzl (2k+2)x2+ L f s
O(0)=(1-4A)+a, (14", (5.0 &b [2(n—k)_1jpzn ez O MoANTE
where we assume only,=ysm+ yim3+0(m°), y;=1v) (A2)
+yim+0O(m?), anda, = ajm*?" %+ O(m). We are then led o
to Using identities
1y - 4x2n B
M?=(®[H|D)/(P|D)=a+| — + % |m+0O(mt*2%). > Copl — 2 2 ANk Ly2n
n 3 1=0 1-4x?) =00
(5.2 (A3)
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OSAMU ABE

[’

1-2x
E 2nc, X2 1Iog—

22n 2k+3

:—20 [E Cko(n—Kk)+1

2n, (A4)

and

(2n+ 1)22n72k+1 .
2h—k+1  |©

E Cznfzn(x):_z [2 Cok
n=1 0| k=0

(AS)
we see that, for a given even functia_,c,,x*",
gkl
L: Z ConX2M— — 2 2n+1)2 . 2(n= k)+lX2n
(AB)

PHYSICAL REVIEW D 60 105040

Power series expansion

)n(4x%)"

(1-4x?)P= 2 B—, (A7)

holds where 4),=
bol. Thus, forc,,=

I'(a+n)/T'(a) is the Pochhammer sym-
(—B)4"n! andc,,,1=0, we see that

47T (14 B)

(1 ax2\Bes 0 TP
£:(1—4%?) T2 B)

F(1,1/2— B;1/2;4x?),
(A8)

where F(a,b;c;z) is the Gauss’ hypergeometric function.
Analogously, we have

87T (1+B)

L:X(1—4x%)P—s— T(1/2+ )

xF(2,1/2— B;3/2;4x?).
(A9)
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