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New basis function approach to the ’t Hooft-Bergknoff-Eller equations

Osamu Abe*
Laboratory of Physics, Asahikawa Campus, Hokkaido University of Education, 9 Hokumoncho, Asahikawa 070-8621, Japa
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We analytically and numerically investigate the ’t Hooft-Bergknoff-Eller equations, the lowest order me-
sonic light-front Tamm-Dancoff equations for U(NC) and SU(NC) gauge theories. We find the wave function
can be well approximated by new basis functions and obtain an analytic formula for the mass of the lightest
bound state. Its value is consistent with the precedent results.@S0556-2821~99!01020-6#

PACS number~s!: 11.10.Ef, 11.10.St, 11.15.Tk
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I. INTRODUCTION

Light-front ~LF! quantization is believed to be an effe
tive method for studying many-body relativistic field theori
@1,2#. The physical vacuum is equivalent to the bare vacu
in the LF coordinate, since all constituents must have n
negative longitudinal momenta defined byk15(k0

1k3)/A2. This simple structure of the true vacuum enab
us to avoid the serious problems which appeared in
Tamm-Dancoff~TD! approximation@3# in the equal time
frame. Therefore, the TD approximation@4# is commonly
used in the context of LF quantization.

The techniques have been developed@5–7# for solving
LFTD equations in several models such as the mas
Schwinger model@8#, which is the extension of the simple
~111!-dimensional QED (QED2) @9#. Bergknoff @10# first
applied the LFTD approximation to the massive Schwin
model. He obtained the so-called Bergknoff equation, wh
is the light front Einstein-Schro¨dinger equation truncated t
one fermion-antifermion pair. He obtained excellent resu
for the lowest energy meson under ’t Hooft’s ansatz. He a
discovered that it is necessary to include two fermio
antifermion pairs in order to study the excited states.

Ma and Hiller @5# studied the lowest Bergknoff equatio
numerically. They developed their numerical method
solving the Bergknoff equation using an idea based u
’t Hooft’s ansatz.

Mo and Perry@6# suggested that even in the first excit
state, most of the wave function consists of four-fermi
sectors when the fermion mass reaches zero. Therefore,
or more fermion sectors must be included so as to desc
wave functions beyond the ground state bosons.

In Ref. @6#, Mo and Perry presented an effective way
treat the ground state and the excited state in the mas
Schwinger model. They concluded that to study the mas
Schwinger model, the Jacobi polynomials are suitable as
sis functions. Haradaet al. @7# studied the massive
Schwinger model with SU(2) flavor symmetry, including u
to four fermion sectors. They used simpler basis functio
which are essentially equivalent to the Jacobi polynomi
Sugihara, Matsuzaki, and Yahiro@11# numerically analyzed
2-dimensional SU(NC) quantum chromodynamics~QCD!

*Email address: osamu@asa.hokkyodai.ac.jp
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@12#, including four-fermion sectors, by means of the ba
functions of Haradaet al.

Although excellent papers exist concerning massless
massive Schwinger models and two-dimensional QCD@16–
19#, including excited states, it is worth analyzing th
‘‘ ’t Hooft-Bergknoff-Eller’’ equation @13#, the extension of
the ’t Hooft-Bergknoff equation, in order to include bot
SU(NC) and U(NC) gauge theories. This is because there
a mathematical interest in the basis function method. Th
is no mathematical evidence that the conventional ba
function expansion describes the wave function well;
stead, the contrary is rather to be supposed, as there is
dence that the conventional method breaks down if we try
improve the approximation. We would therefore like to im
prove the basis functions so as to avoid such difficulties.

Further, there is a so-called ‘‘2% discrepancy’’ proble
briefly summarized as follows: We expand dimensionle
meson mass squaredM2 in terms of dimensionless quar
massm:

M2511b1m1b2m21•••, ~1.1!

where

M25
M̄2

m~NC!
and m25

m̄2

m~NC!
. ~1.2!

Here,M̄ is a mass of bound state,m̄ denotes a bare mass o
quark, and m(NC) stands for m(NC)5(NC

2 21
1a)g2/2pNC . That is, we measure all masses in the unit
m(NC). Bankset al. @14# obtained first order coefficientb1
analytically, using the bosonization method:

b152egE53.56214•••, ~1.3!

where gE50.57721••• is Euller’s constant. On the othe
hand, Bergknoff@10# found the value

b15
2p

A3
53.62759•••, ~1.4!

which differs from Eq.~1.3! by 2%. In Ref.@15#, the authors
suggested that the coefficientb152p/A3 was a variational
invariant and that this discrepancy was ascribable to the c
tributions from the higher Fock sectors. Before proceed
on to consider the higher Fock sectors, we have to exam
©1999 The American Physical Society40-1
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OSAMU ABE PHYSICAL REVIEW D 60 105040
whether this discrepancy can be explained or not in term
the lowest light-front Tamm-Dancoff equation using all po
sible basis functions.

The ’t Hooft-Bergknoff-Eller equation for two-dimen
sional gauge theory is given in the form

M2F~x!5E
21/2

1/2

dy H~x,y!F~y!

[
4~m221!

124x2 F~x!2`E
21/2

1/2

dy
F~y!

~y2x!2

1aE
21/2

1/2

dy F~y!, 2
1

2
<x<

1

2
, ~1.5!

where ` denotes the finite part integral,a51 for U(NC),
anda50 for SU(NC). In Eq. ~1.5!, we shifted the variablex
total amount of2 1

2 compared with the variable in Refs
@10,12,13#, in order to show the symmetry of the wavefun
tion transparently.

Mo and Perry concluded in Ref.@6# that the Jacobi poly-
nomials, (124x2)bPn

b,b(2x) in our notation, are the mos
suitable basis functions. This conclusion seems quite nat
because the system of the Jacobi polynomialsPn

b,b(2x) is an
orthogonal complete set on the interval2 1

2 <x< 1
2 with re-

spect to the weight function (124x2)b. Harada and collabo
rators @7# suggested using the simpler basis functions,
24x2)b1 j and x(124x2)b1 j in our notation, which are
equivalent to the abovementioned ones. According to Har
et al., one can expect that the wave function could be
panded as follows:

F~x!55 lim
N→`

(
j 50

N

aj~124x2!b1 j ,

lim
N→`

(
j 50

N

bjx~124x2!b1 j .

~1.6!

Here, we have used the fact, as is shown in the Appen
that the Eller equation does not mix even and odd functi
with each other.

The exponentb and the quark massm are related to each
other by the equation@12,10#

~m221!1bp cotbp50. ~1.7!

The authors of Refs.@5,10,7,11# adopted the positive small
est solutionb0(m) of Eq. ~1.7! asb in Eq. ~1.6!. That is, for
small m,

b0~m!5A3m

p S 12
m2

10D1O~m5![b0
1m1b0

3m31•••.

~1.8!

In the following sections, we try to determine the coefficien
an’s, according to the predecessors.
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II. CONVENTIONAL BASIS FUNCTION METHOD

In this section, we restrict ourselves to the casea50
where the gauge group is SU(NC). Mo and Perry, and
Harada and his collaborators, presented an effective wa
determine the coefficients. We will briefly reproduce the
procedures. By the use of the expansion in Eq.~1.6! trun-
cated to given finite numberN for the wave functionF, we
multiply both sides of Eq.~1.5! by (124x2)b1 i and inte-
grate them overx, then we obtain

M2N̂aW 5ĤaW , aW 5 t@a0 ,a1 , . . . ,an21#. ~2.1!

Here N̂ and Ĥ aren3n matrices and are given by

N̂i j 5E
21/2

1/2

dx~124x2!b1 i~124x2!b1 j

5
p1/2G~2b1 i 1 j 11!

2G~2b1 i 1 j 13/2!
~2.2!

and

Ĥ i j 54~m221!E
21/2

1/2

dx~124x2!2b1 i 1 j 21

2`E
21/2

1/2

dx dy
~124x2!b1 i~124y2!b1 j

~y2x!2

52p1/2~m221!
G~2b1 i 1 j !

G~2b1 i 1 j 11/2!

1
24b12i 12 j 23~b1 i !~b1 j !

2b1 i 1 j

3B~b1 i ,b1 i !B~b1 j ,b1 j !, ~2.3!

see the Appendix of Ref.@7#. So-called ‘‘norm’’ matrix N̂
appeared in the above equation because the basis func
we have used are not orthonormalized. In order to have
genvalues of the generalized eigenvalue equation give
Eq. ~2.1!, we have to solve the eigenvalue problem for no
N̂ first, i.e.,

N̂vW i5l ivW i . ~2.4!

Next, we introduce a transformation matrixŴ by

Ŵ5F vW 1

uuvW 1uuAl1

•••

vW n

uuvW nuuAln
G . ~2.5!

Then, we can transform Eq.~2.1! into a usual eigenvalue
problem of the form

M2bW 5 tŴĤŴbW , aW 5ŴbW . ~2.6!
0-2
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We can solve Eq.~2.6!, numerically. ForN53 and m
50.01, we find, for the ground state boson

b50.00552328, M250.0366342,

a051, a150.00203562,

a2520.000579369, a350.000165813. ~2.7!

The values of the left-hand side~LHS! and the right-hand
side~RHS! of Eq. ~1.5! are shown in Fig. 1. The coincidenc
of the LHS and the RHS is high for small values ofx. For
x.61/2, the behavior of the LHS and the RHS are qu
different. There are sharp spikes at the end points. This
havior is not changed much even if we improve the order
approximation.

Note here that in order to solve the generalized eigenva
problem, the norm matrix should be positive definite. W
cannot advance the above procedure beyondN.12, because
some of the eigenvalues of the norm matrixN̂ become al-
most zero or negative. We will examine mathematically t
approximated wave function in detail in the next section.

III. AN INSPECTION OF THE CONVENTIONAL BASIS
FUNCTION METHOD

A. Behavior of wave function around x50

We introduce linear mapL by

L: f °Lf such that ~Lf !~x!5`E
21/2

1/2

dy
f ~y!

~y2x!2 .

~3.1!

FIG. 1. The comparison of the relative values of both sides
Eq. ~1.5! for a50. The wave function in Eq.~1.5! was approxi-
mated by Eq.~1.6! with N53 and Eq.~2.7!. The solid line repre-
sents the LHS and the dotted line stands for the RHS. The R
with N59, which is indicated by the dashed line, is exhibited
comparison.
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After some tedious but not particularly difficult calculation
we find that

L:~124x2!b°24p1/2
G~b11!

G~b11/2!
F~1,1/22b;1/2;4x2!,

L:x~124x2!b°28p1/2
G~b11!

G~b11/2!
xF~2,1/22b;3/2;4x2!.

~3.2!

where F(a,b;c;x) is the Gauss’ hypergeometric functio
@20#, see the Appendix.

We restrict ourselves to the case where the wave func
is an even function, because we are interested in only
ground state meson. Thus, we are led to

lim
N→`

(
n50

N

anM2~124x2!b1n

5 lim
N→`

(
n50

N

anF4~m221!~124x2!b1n21

14p1/2
G~b1n11!

G~b1n11/2!
F~1,1/22b2n;1/2;4x2!G .

~3.3!

Now, we can examine whether the numerical result o
tained so far satisfies Eq.~1.5! or not. We substitute Eq.~2.7!
into the above equation, and obtain

LHS~x!50.036693620.00101207x220.00165597x4

20.00466671x61O~x8! ~3.4!

and

RHS~x!50.036713320.0038283x210.0503141x4

20.210419x61O~x8!. ~3.5!

Thus, the LHS and the RHS coincide, within numerical
rors, with each other only up toO(x0). We calculated coef-
ficients an’s up to n510, but the coincidence between th
LHS and the RHS is not much improved. See Fig. 1.

B. Behavior of wave function nearx56 1
2

Bergknoff suggested that the behavior of wave funct
F near end pointsx56 1

2 is important in order to calculate
the mass eigenvalueM2. In fact, Eq. ~1.7! is derived by
demanding that the most singular part, that is, the coe
cients of (124x2)b21 on the RHS in Eq.~1.5! must be
cancelled, as there is no such term on the LHS. Accordin
Bergknoff’s suggestion, we will examine the behavior
wave function near the end points beyondO„(124x2)b21

….
We set 4x2512e. By the use of the identity for the hyper
geometric functions, that is, Eq.~15.3.6! in Ref. @20#, which
is valid fora1b2cÞ integer, we can expand the RHS of E
~3.3! arounde50 and have

f

S

0-3
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LHS5M2(
n50

`

aneb1n ~3.6!

and

RHS54~m221! (
n50

`

aneb1n2114p (
n50

`

(
j 50

n

aj~b1 j !

3cot@p~b1 j !#
~21/2!n2 j

~n2 j !!
eb1n2122p1/2(

n50

`

3F (
j 50

`

aj

G~b1 j 11!~1/22b2 j !n

~b1 j 21!G~b1 j 11/2!~22b2 j !n
Gen.

~3.7!

Substituting the numerical solution, which is given in E
~2.7!, into Eqs.~3.6! and ~3.7!, we have

LHS~e!50.0366342eb17.4573431025eb1122.12247

31025eb121O~eb13! ~3.8!

and

RHS~e!50.55165620.525734eb12.09072e22.08014eb11

1O~e2!. ~3.9!

Only eb21 terms on the LHS and the RHS coincide wi
each other, because we defineb so that the coefficients o
eb21 cancel each other on the RHS. Note that the LHS d
not containen terms with non-negative integern, while the
RHS does. These tendencies are not changed even i
calculatean’s for n53, 6, and 10.

If we rewrite the first two terms of Eq.~3.9! as

0.551656~12eb!10.025922eb, ~3.10!

we can see the origin of the spikes at the endpoints in Fig
The spikes arise from the existence of the constant term
the wave function. The wave functionF(x)[1 is the exact
solution of Eq. ~1.5! for m250 and M250 in SU(NC).
Thus, one may expect that the spikes at the end points
closely related to the existence of the massless bound sta
SU(NC). This is not the case, however, because we can
ily see that the constant term, in the wave function, is
lowed if and only ifm2[0. We may conclude that the spike
are nothing but the artifact which arose from the fact that
have used the improper basis functions in Eq.~1.6!. In fact,
we may remove the spikes if we use the suitable wave fu
tion. Refer to the next section.

The basis function given in Eq.~1.6! cannot be a good
mathematical approximation of the true wave function. T
reason is as follows: If we truncate the series Eq.~1.6! to N,
we expect that Eq.~1.5! holds up toO(eb1N21). We have
only N11 parametersa1 , a2 , . . . , an and M2. On the
other hand, we have 2N equations up toO(eb1N21). No
consistent solution can exist in general in this case.
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The main difficulty comes from the fact thatL maps (1
24x2)b not only to the terms (124x2)b1 j 21 with non-
negative integerj but also to the terms (124x2) j . One may
expect that the above difficulty is avoidable if the addition
terms (124x2) j are introduced in Eq.~1.6!. However, we
can easily see that coefficients of such terms must cancel
the use of the identity, that is Eq.~15.3.11! in Ref. @20#, we
have, forn>2,

L:~124x2!n°2
1

2~n21! (
k50

n22
~1/22n!k

~22n!k
~124x2!k

2
p1/2

G~1/22n!
~2114x2!n21

3 (
k50

`
~n!k~21/2!k

k! ~k1n21!!
~124x2!k

3@ log~124x2!2c~k11!

1c~21/21k!#. ~3.11!

Here,c(z) denotes the digamma function. An analogous f
mula for n51 holds. See Eq.~15.3.10! in Ref. @20#. If we
introduce a term (124x2)n in Eq. ~1.6! with positive integer
n, a new singular term such asen21loge appears only on the
RHS. Note that the exponentn of e is the same as that of th
introduced term. Thus all the coefficients of (124x2)n

should be zero.

IV. NEW BASIS FUNCTION

We must notice that there are infinite solutions of E
~1.7! in addition to the solution given by Eq.~1.8!. In fact,
we see that

bn~m!5n11/22
1

~n11/2!p2
2

2

3~n11/2!3p4

1OS 1

~n11/2!5p6D 1m2F 1

~n11/2!p2

1
1

3~n11/2!3p4
1OS 1

~n11/2!5p6D G1O~m4!

[bn
01bn

2m21•••, n51,2,3•••. ~4.1!

From Eqs.~1.8! and ~4.1!, we are led to

0!bn~m!2b0~m!2n,1/2,

0,bn~m!2bk~m!2~n2k!!1, n.k. ~4.2!

The above relations imply that Eq.~1.6! never incorporates
terms such as (124x2)bn1 j with positive integern and non-
negative integerj.

We posit that the wavefunction is given by an infini
series
0-4
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TABLE I. Number of nontrivial equations.

Terms Range of n Range ofj Number of nontrivial equations

(124x2)bn21 0;N 0 ~automatically satisfied!

(124x2)bn1 j 0;N 0;N2n21
N~N11!

2
(124x2) j 0;N21 N
b
nc
s
e

is

ia

by

oo

ld

e
ti-

s

e

rms
F~x!5 lim
N→`

(
n50

N

(
j 50

N2n

cn
j ~124x2!bn(m)1 j . ~4.3!

For counting the number of free parameters and the num
of nontrivial equations, we consider the truncated wave fu
tion to given finiteN. The truncated wave function include
the term (124x2)bN and all the other lower order terms. W
require that Eq.~1.5! should hold up toO(124x2)bN21. For
each given value ofm, the unknown parameters areM2 and
cn

j except forc0
0[1. Thus the number of the parameters

(N11)(N12)/2. On the other hand we haveN(N13)/2
nontrivial equations. See Table I.

The number of parameters is larger than that of non-triv
equations by 1. Thus, we can solve the equations forcn

j in
terms ofM2. Another equation of use to us is obtained
multiplying both sides of Eq.~1.5! by F(x) and integrating
them over x,

M2E
21/2

1/2

dxuF~x!u25E
21/2

1/2 E
21/2

1/2

dx dyF~x!H~x,y!F~y!.

~4.4!

It should be noted here that Eq.~4.3! is, mathematically,
the most general expansion. This means that there is no r
to introduce any other additional terms such asd(124x2)g

for gÞbn1 j with non-negative integersn and j. If we in-
troduce such terms, then the following equality should ho

054d@m2211pg cot~pg!#~124x2!g21. ~4.5!

This demands thatd[0. In the following subsections, w
will examine our new basis function in detail both analy
cally and numerically.

A. An analytic approach

In this subsection, we will restrict ourselves to the ca
whereN51. Up toO(eb121), we have four equations:

eb021:054~m221!c0
014pb0 cot~pb0!c0

0 , ~4.6a!

e0:05c0
0 G~11b0!

~12b0!G~1/21b0!
2c0

1 G~21b0!

b0G~3/21b0!

1c1
0 G~11b1!

~12b1!G~1/21b1!
1

a

4 F c0
0 G~11b0!

G~3/21b0!

1c0
1 G~21b0!

GS 5

2
1b0D 1c1

0 ~11b1!

G~3/21b1!G , ~4.6b!
10504
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eb0:c0
0M254c0

1~m221!14p cot~pb0!

3F2
c0

0b0

2
1~11b0!c0

1G , ~4.6c!

eb121:054~m221!c1
014pb1 cot~pb1!c1

0 . ~4.6d!

Equations~4.6a! and~4.6d! are automatically satisfied. Sinc
c0

0[1, we can solve Eqs.~4.6b! and ~4.6c! for c0
1 andc1

0 in
terms ofm, M, b0, andb1.

Now, in order to solve the above equations forM, we
assume that all physical quantities can be expanded in te
of quark massm. That is,

M25b01b1m1•••. ~4.7!

Thus, we have, up toO(m),

E
21/2

1/2

dxuF~x!u2[^FuF&

511m†2b0
1
„2218b1

0@123 log~2!#

212 log~2!1a$226 log~2!

2b1
0@526 log~2!#%…‡

3$3@221a~211b1
0!24b1

0#%21

1b1mF 2~12b1
0!

21a14b1
02ab1

0G ~4.8!

and

E
21/2

1/2 E
21/2

1/2

dx dyF~x!H~x,y!F~y!

[^FuHuF&

5a1m„22~112b1
0!~31b0

12
p2!

1a$3~211b1
0!1~b0

1!2@4816b1
02p21b1

0p2

236 log~2!236b1
0 log~2!] %…

3$3b0
1@221a~211b1

0!24b1
0#%21

1b1mF 2~12b1
0!

21a14b1
02ab1

0G . ~4.9!
0-5
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OSAMU ABE PHYSICAL REVIEW D 60 105040
We may expect that coefficientb1 depends ona, as both
coefficients ofm in Eqs.~4.8! and~4.9! explicitly depend on
a. However, this is not the case. Indeed, from Eq.~4.4!, we
are led to

M25a1S 1

b0
1

1
b0

1p2

3 D m1O~m2!

5a1
2p

A3
m1O~m2!. ~4.10!

Note that we obtained the first line in the above expans
without referring to the explicit value ofb1. We did not
reproduce the result of Bankset al., but that of Bergknoff.
The approximated wave function in casem50.01 andN
51 is shown in Fig. 2. The approximation used here is
rough that the coincidence of the LHS and the RHS is po
Nevertheless, the behavior of the RHS near the end poin
quite calm compared with the results of the conventio
basis function method. The smoothness of the RHS is q
natural. As mentioned previously, the wave function given
Eq. ~4.3! is the most general. If we truncate the wave fun
tion up to orderN, it becomes smooth. So we may al
expect the RHS of the ’t Hooft–Bergknoff-Eller equation
be smooth.

We may expect that the coincidence of the LHS and
RHS will be improved if the higher order terms are include

FIG. 2. The comparison of the relative values of both sides
Eq. ~1.5! for a50. The wave function in Eq.~1.5! was approxi-
mated by Eq.~4.3! with N51 and Eq.~4.10! with m50.01. The
solid line represents the LHS and the dashed line stands for
RHS.
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In cases whereN>2, we cannot treat things analytically. W
will attempt to solve Eq.~1.5! numerically by the use of new
basis function in the next subsection.

B. A numerical approach

In general, we have

05M2F~x!2E
21/2

1/2

dy H~x,y!F~y!U
124x25e

524(
n50

`

cn
0~m2211pbn cotpbn!ebn21

1 (
n50

`

(
j 50

` S M2cn
j 24~m221!cn

j 11

24p(
k50

j 11

cn
k~bn1k!cotpbn

~21/2! j 112k

~ j 112k!! D ebn1 j

1
p1/2

2 (
n50

`

(
j 50

`

cn
j S 4G~bn1 j 11!

~bn1 j 21!G~bn1 j 11/2!

2
aG~bn1 j 11!

G~bn1 j 13/2! D e0

12p1/2(
k50

` S (
n50

`

(
j 50

`

cn
j G~bn1 j 11!

~bn1 j 21!G~bn1 j 11/2!

3
~1/22bn2 j !k11

~22bn2 j !k11
D ek11. ~4.11!

Here, e[124x2 as before. Of course, the first line in Eq
~4.11! cancels automatically because of the definition
bn’s. Then, suppose that we truncate series in Eq.~4.3! to
O(ebN). That is, we setcn

j 50 for n1 j .N. For a givenm,
we put M25Mi

2 . We can then solve Eq.~4.11! for cn
j in

terms of Mi . We thus obtain theMi dependent truncated
wave function, say,F(x;Mi). We can calculate a new mas
eigenvalueMi 11 using this wave function as

Mi 11
2 5

^F~Mi !uHuF~Mi !&

^F~Mi !uF~Mi !&
. ~4.12!

We can use Eq.~4.10! asM0
2. ForN<15 andm50.01, mass

M2 converges in 5 iterations. For 0,m,0.5, we obtain
M2’s which are summarized in Table II. We can fit them b
polynomials, as follows:

f

he
5
3

TABLE II. Numerical results for bound state massM2 in SU(NC) and U(NC) models as a function of
quark massm.

m 0.01 0.10 0.20 0.30 0.40 0.50

M2 in SU(NC) 0.036634 0.398634 0.869282 1.412358 2.028271 2.71741
M2 in U(NC) 1.036607 1.396177 1.860377 2.394130 2.998685 3.67507
0-6
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M2~a50,m!53.62763m13.58027m210.0683573m3

1O~m4!

M2~a51,m!5113.62421m13.34492m210.213839m3

1O~m4!. ~4.13!

It should be noted here that the coefficients ofm are consis-
tent with Eq.~4.10! and Bergknoff’s result. In order to se
the efficacy of this new basis function expansion, we sh
the wave functions in Fig. 3.

V. SUMMARY AND DISCUSSION

In the preceding sections we have introduced the n
basis function and calculated the mass eigenvalue of
bound state using the new basis function. We have found
~1! the new basis function gives an effective approximat
of the wave function and~2! the mass eigenvalues are co
sistent with the results of the precursors. In the remainde
this section, we will discuss the 2% discrepancy problem

Let us consider the wave function given by

F~x!5~124x2!g01a1~124x2!g1, ~5.1!

where we assume onlyg05g0
1m1g1

3m31O(m5), g15g1
0

1g1
1m1O(m2), anda15a1

1m1/21d1O(m). We are then led
to

M2[^FuHuF&/^FuF&5a1S 1

g0
1

1
g0

1p2

3 D m1O~m112d!.

~5.2!

FIG. 3. The convergence of the new basis function expans
for m50.01 fixed. The thin solid line represents the LHS in E
~1.5!, provided that the wave function was approximated by E
~4.3! with N515. The dotted line denotes the RHS withN52, the
dot-dashed line exhibits the RHS withN53, the dot-dot-dashed
line represents the RHS withN54, the dot-dash-dashed line stan
for the RHS withN55, and the dashed line exhibits the RHS wi
N510. The thick solid line indicates the RHS in Eq.~1.5! with
wave function given in Eq.~4.3! with N515.
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This relation holds independently of the details ofg0 , g1,
and a1, except for certain assumptions which were ma
before Eq.~5.2!. The coefficient ofm in Eq. ~5.2! has the
minimum value 2p/A3 when g0

15b0
1[A3/p. We may

therefore conclude that Eq.~5.2! holds universally, provided
that ~1! the wave function can be expanded as a power se
of (124x2), similar to

F~x!5~124x2!g01(
j 51

`

aj~124x2!g j , g0,g1,•••

and ~2! the coefficients of the series,aj ’s, are of order
m1/21d.

An almost identical result has been obtained by Hara
et al. @15#, in which they have restricted themselves to a ca
whereg05b0, andg j5b01 j . Our conclusion is a generali
zation of Haradaet al.’s result. We, therefore, cannot solv
the ‘‘2% discrepancy’’ problem in the context of th
’t Hooft-Bergknoff-Eller equations.
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APPENDIX: PROOF OF EQ. „3.2…

We will prove Eq.~3.2!. For monomialxn, by the use of
the definition of the finite part integral, we obtain

L:xn°2
4xn

124x2 1nxn21 log
122x

112x
1 f n~x!. ~A1!

Here,

f m~x!5 (
k52

m mCk

k21 H S 1

2
2xD k21

2S 2
1

2
2xD k21J xm2k

55 (
k50

n21
~2k11!x2k

$2~n2k!21%22n22k22
, for m52n,

(
k50

n21
~2k12!x2k11

$2~n2k!21%22n22k22
, for m52n11.

~A2!

Using identities

(
n50

`

c2nS 2
4x2n

124x2D 52 (
n50

`

(
k50

n

c2k4
n2k11x2n,

~A3!

n
.
.
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(
n50

`

2nc2nx2n21 log
122x

112x

52 (
n50

` F (
k50

n

c2k

22n22k13k

2~n2k!11Gx2n, ~A4!

and

(
n51

`

c2nf 2n~x!52 (
n50

` F (
k50

n

c2k

~2n11!22n22k11

2~n2k!11 Gx2n,

~A5!

we see that, for a given even function(n50
` c2nx2n,

L: (
n50

`

c2nx2n°2 (
n50

`

~2n11!(
k50

`
4n2k11c2k

2~n2k!11
x2n.

~A6!
ev

s

10504
Power series expansion

~124x2!b5 (
n50

`
~2b!n~4x2!n

n!
, ~A7!

holds where (a)n[G(a1n)/G(a) is the Pochhammer sym
bol. Thus, forc2n5(2b)n4n/n! and c2n1150, we see that

L:~124x2!b°2
4p1/2G~11b!

G~1/21b!
F~1,1/22b;1/2;4x2!,

~A8!

where F(a,b;c;z) is the Gauss’ hypergeometric function
Analogously, we have

L:x~124x2!b°2
8p1/2G~11b!

G~1/21b!
xF~2,1/22b;3/2;4x2!.

~A9!
D

l
les
@1# S. J. Brodsky, H-C. Pauli, and S. Pinsky, Phys. Rep.301, 299
~1998!.

@2# M. Burkardt, Adv. Nucl. Phys.23, 1 ~1996!.
@3# I. Tamm, J. Phys.~Moscow! 9, 449 ~1945!; S. M. Dancoff,

Phys. Rev.78, 382 ~1950!.
@4# R. J. Perry, A. Harindranath, and K. G. Wilson, Phys. R

Lett. 65, 2959~1990!.
@5# Y. Ma and J. R. Hiller, J. Comput. Phys.82, 229 ~1989!.
@6# Y. Mo and R. J. Perry, J. Comput. Phys.108, 159 ~1993!.
@7# K. Harada, T. Sugihara, M. Taniguchi, and M. Yahiro, Phy

Rev. D49, 4226~1994!.
@8# S. Coleman, R. Jackiw, and L. Susskind, Ann. Phys.~N.Y.! 93,

267 ~1975!; S. Coleman,ibid. 101, 239 ~1976!.
@9# J. Schwinger, Phys. Rev.128, 2425~1962!.

@10# H. Bergknoff, Nucl. Phys.B122, 215 ~1977!.
@11# T. Sugihara, M. Matsuzaki, and M. Yahiro, Phys. Rev. D50,

5274 ~1994!.
.

.

@12# G. ’t Hooft, Nucl. Phys.B75, 461 ~1974!.
@13# K. Hornbostel, S. J. Brodsky, and H.-C. Pauli, Phys. Rev.

41, 3814~1990!.
@14# T. Banks, J. Kogut, and L. Susskind, Phys. Rev. D13, 1043

~1976!.
@15# K. Harada, T. Heinzl, and C. Stern, Phys. Rev. D57, 2460

~1998!.
@16# S. Huang, J. W. Negele, and J. Polonyi, Nucl. Phys.B307, 669

~1988!.
@17# B. van de Sande, Phys. Rev. D54, 6347~1996!.
@18# A. Duncan, S. Pernice, and E. Schnapka, Phys. Rev. D55,

2422 ~1997!.
@19# O. Abe, G. J. Aubrecht, and K. Tanaka, Phys. Rev. D56, 2242

~1997!.
@20# M. Abramowitz and I. A. Stegun,Handbook of Mathematica

Functions with Formulas, Graphs, and Mathematical Tab
~Dover, New York, 1972!.
0-8


